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Motivations (I)

e Cloud Radiative Forcing (CRF)

— Defined as: Flux -Flux

clear-sky all-sky
e Clear-sky vs. all-sky: everything is identical except

clouds

— Straightforward to get Flux in the models

clear-sky

— Not easy to get in observations

¢ Cloud-cleared radiances: cloud fractions, built-in
assumptions, retrieval quality

e Wi Flux of clear-sky pixel

I:qutrue clear-sky I:quclear—sky pixel —



— Flux =7

Flux clear-sky pixel —*

true clear-sky

e Deep convective region

— Drier clear-sky pixels vs.
humid cloudy pixels

— OLR <OLR

e Alway a cold bias? How
much?

40km

true clr-sky clr-sky pixel

e Observation-based bias
estimation
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ABSTRACT

In this paper, the amount of satellite-derived longwave cloud radiative forcing (CRF) that is due to an
increase in upper-tropospheric water vapor associated with the evolution from clear-sky to the observed
all-sky conditions is assessed. This is important because the satellite-derived clear-sky outgoing radiative
fluxes needed for the CRF determination are from cloud-free areas away from the cloudy regions in order
to avoid cloud contamination of the clear-sky fluxes. However, avoidance of cloud contamination implies
a sampling problem as the clear-sky fluxes represent an area drier than the hypothetical clear-sky humidity
in cloudy regions. While this issue has been recognized in earlier works this study makes an attempt to
quantitatively estimate the bias in the clear-sky longwave CRF. Water vapor amounts in the 200-500-mb
layer corresponding to all-sky condition are derived from microwave measurements with the Special Sensor
Microwave Temperature-2 Profiler and are used in combination with cloud data for determining the
clear-sky water vapor distribution of that layer. The obtained water vapor information is then used to
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I shown that the clear-sky moisture bias in the upper troposphere can be up to 40%-50% drier over con-
| vectively active regions. Results indicate that up to 12 W m™2 corresponding to about 15% of the satellite-
| derived longwave CRF in tropical regions can be attributed to the water vapor changes associated with
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Motivations (ll): high-resolution GCM runs

e High-resolution: 25-50km
— Comparable to satellite footprint
— AMIP type runs are now affordable

e GFDL HiRam model

— Cubic-sphere dynamic core

— AM2 physics, but unified convection schemes (one for both shallow

and deep convections) and diagnostic cloud fraction for stratiform
clouds

— Forced with observed SST
— Improved simulation on cloud and UTH climatology
— Hurricane climatology and interannual variability

e Archive 3-hourly output from the HiRam run (July 1995-June
1996)

e Sample it in the satellite way
e X

satellite_sample_xtruth



01-Jul-1995 01:30:00UTC, GFDL AM2 50-km run
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GFDL HiRAM OLR (Wm-2)

¢ 01-Jul-1995 01:30:00UTC, GFDL AM2 50-km run
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North Atlantic North Indian
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FIG. 5. Observed and model simulated seasonal cycle (number of hurricanes per month) for each ocean basin from
the four-member ensemble mean (1 = January, 12 = December).



Methodology

Grid A: 2.5°(lon)x2 °(lat) (16 native grid cells)

FIux gy oixe=Flux(cells:cld_frac < 1%)

Flux as computed from the model

true_clr-sky

Estimation of monthly-mean clear-sky flux and CRF

— ensure equal weighting of phases of diurnal cycle
e First compute monthly mean of each 3-hourly snapshot
e Average 8 month-mean snapshots equally to obtain the monthly
mean
— Hereafter, “
approach

e OLRC,, CRF

est est

st denotes quantities obtained from this

SWFIx ., WVP_,

est



Difference in Total Precipitable Water
(WVP,. . —WVP__, Jul95-Jun96)

true est’

90
70°
50"
30°
10’
10’
30
50"
70°
90’

w 0w unu nu 2 2 2 2 Z

v

00 45E 90E 135 E 180 E 135 W 90 W 45 W 0

-5 0 5 10 15 (kg m2)

As expected, clear-sky portion is drier than cloudy portion (except two snow region)
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Global annual mean: -4.12 W m-2 (True — Estimation)
Small month-to-month variation < 10%
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tter plot of AWVP vs. AOLR

clr-sky

o

»

| | | .

20
15+
10—
“IIA-\
£
2
z S
n
o
(5]
-
IU
— 0
O
‘>
0n
L
e O
2
IH
-
O
-10 L
-15 [
-20
-10

0 5 10
Diff in precipitable water (true - est) (kg/mz)

15

20



Pressure (mb)

Composite Analysis (Sub Antarctic region)
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LW CRFtrue- LW CRFest
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Conclusions

High-resolution GCM runs provide another way to assess the
intrinsic bias due to sampling disparity between model and
observations

While clear-sky grid cells are drier than cloudy ones, the
temperature difference also needs to be factored in

In tropics and most parts of mid-latitude, AT is small, so dry
bias dominant
— LW CRF (OLRc) +5-10Wm bias

In sub-polar region, drier and colder in the clear-sky grid cells
— LW CRF (OLRc) —=(5-10) Wm bias
Global mean, estimation would have a “4Wm™2 bias



